
e04 – Minimizing or Maximizing a Function e04nfc

nag opt qp (e04nfc)

1. Purpose

nag opt qp solves general quadratic programming problems. It is not intended for large sparse
problems.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_qp(Integer n, Integer nclin, double a[], Integer tda, double bl[],
double bu[], double cvec[], double h[], Integer tdh,
void (*qphess)(Integer n, Integer jthcol, double h[], Integer tdh,

double x[], double hx[], Nag_Comm *comm),
double x[], double *objf, Nag_E04_Opt *options,
Nag_Comm *comm, NagError *fail)

3. Description

nag opt qp is designed to solve a class of quadratic programming problems stated in the following
general form:

minimize
x∈Rn

f(x) subject to l ≤
{

x
Ax

}
≤ u,

where A is an mlin by n matrix and f(x) may be specified in a variety of ways depending upon
the particular problem to be solved. The available forms for f(x) are listed in Table 1 below, in
which the prefixes FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic
programming’ respectively and c is an n element vector.

Problem Type f(x) Matrix H
FP Not applicable Not applicable
LP cT x Not applicable
QP1 1

2xT Hx symmetric
QP2 cT x + 1

2xT Hx symmetric
QP3 1

2xT HT Hx m by n upper trapezoidal
QP4 cT x + 1

2xT HT Hx m by n upper trapeziodal

Table 1

For problems of type FP a feasible point with respect to a set of linear inequality constraints
is sought. The default problem type is QP2, other objective functions are selected by using the
optional parameter prob (see Section 8.2).

The constraints involving A are called the general constraints. Note that upper and lower bounds
are specified for all the variables and for all the general constraints. An equality constraint can be
specified by setting li = ui. If certain bounds are not present, the associated elements of l or u can
be set to special values that will be treated as −∞ or +∞. (See the description of the optional
parameter inf bound in Section 8.2.)

The defining feature of a quadratic function f(x) is that the second-derivative matrix ∇2f(x) (the
Hessian matrix) is constant. For the LP case, ∇2f(x) = 0; for QP1 and QP2, ∇2f(x) = H; and
for QP3 and QP4, ∇2f(x) = HT H. If H is defined as the zero matrix, nag opt qp will solve
the resulting linear programming problem; however, this can be accomplished more efficiently by
setting the optional parameter prob = Nag LP, or by using nag opt lp (e04mfc).

The user must supply an initial estimate of the solution.

In the QP case, the user may supply H either explicitly as an m by n matrix, or implicitly in a C
function that computes the product Hx for any given vector x. An example of such a function is
included in the example program in Section 6. There is no restriction on H apart from symmetry.

[NP3491/6] 3.e04nfc.1

nag opt qp NAG C Library Manual

In general, a successful run of nag opt qp will indicate one of three situations: (i) a minimizer has
been found; (ii) the algorithm has terminated at a so-called dead-point; or (iii) the problem has
no bounded solution. If a minimizer is found, and H is positive-definite or positive semi-definite,
nag opt qp will obtain a global minimizer; otherwise, the solution will be a local minimizer (which
may or may not be a global minimizer). A dead-point is a point at which the necessary conditions
for optimality are satisfied but the sufficient conditions are not. At such a point, a feasible direction
of decrease may or may not exist, so that the point is not necessarily a local solution of the problem.
Verification of optimality in such instances requires further information, and is in general an NP-
hard problem (see Pardalos and Schnitger (1988)). Termination at a dead-point can occur only if
H is not positive-definite. If H is positive semi-definite, the dead-point will be a weak minimizer
(i.e., with a unique optimal objective value, but an infinite set of optimal x).

Details about the algorithm are described in Section 7, but it is not necessary to read this more
advanced section before using nag opt qp.

4. Parameters

n
Input: n, the number of variables.
Constraint: n > 0.

nclin
Input: mlin, the number of general linear constraints.
Constraint: nclin ≥ 0.

a[nclin][tda]
Input: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of A), for i = 1, 2, . . . ,mlin. If nclin = 0 then the array a is not referenced.

tda
Input: the second dimension of the array a as declared in the function from which nag opt qp
is called.
Constraint: tda ≥ n if nclin > 0.

bl[n+nclin]
bu[n+nclin]

Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the
variables, and the next mlin elements the bounds for the general linear constraints (if any).
To specify a non-existent lower bound (i.e., lj = −∞), set bl[j] ≤ −inf bound, and to specify
a non-existent upper bound (i.e., uj = +∞), set bu[j] ≥ inf bound; here inf bound is the
optional parameter options.inf bound, whose default value is 1020 (see Section 8.2). To specify
the jth constraint as an equality, set bl[j] = bu[j] = β, say, where |β| < inf bound.
Constraints:

bl[j] ≤ bu[j], for j = 0, 1, . . . ,n+nclin−1,

|β| < inf bound when bl[j] = bu[j] = β.

cvec[n]
Input: the coefficients of the explicit linear term of the objective function when the problem is
of type Nag LP, Nag QP2 and Nag QP4. The default problem type is Nag QP2 corresponding
to QP2 described in Section 3; other problem types can be specified using the optional
parameter prob; see Section 8.2.
If the problem is of type Nag FP, Nag QP1 or Nag QP3, cvec is not referenced and therefore
a NULL pointer may be given.

h[n][tdh]
Input: h may be used to store the quadratic term H of the QP objective function if desired.
The elements of h are accessed only by the function qphess; thus h is not accessed if the
problem is of type Nag FP or Nag LP. The number of rows of H is denoted by m, its default
value is equal to n. (The optional parameter hrows may be used to specify a value of m < n;
see Section 8.2.)

3.e04nfc.2 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

If the problem is of type Nag QP1 or Nag QP2, the first m rows and columns of h must
contain the leading m by m rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper triangular elements of the leading m rows and columns of h are referenced.
The remaining elements need not be assigned.
For problems Nag QP3 and Nag QP4, the first m rows of h must contain an m by n upper
trapezoidal factor of the Hessian matrix. The factor need not be of full rank, i.e., some of the
diagonals may be zero. However, as a general rule, the larger the dimension of the leading
non-singular sub-matrix of H, the fewer iterations will be required. Elements outside the
upper trapezoidal part of the first m rows of H are assumed to be zero and need not be
assigned.
In some cases, the user need not use h to store H explicitly (see the specification of function
qphess below).

tdh
Input: the second dimension of the array h as declared in the function from which nag opt qp
is called.
Constraint: tdh ≥ n or at least the value of the optional parameter hrows if it is set.

qphess
In general, the user need not provide a version of qphess, because a ‘default’ function is
included in the NAG C Library. If the default function is required then the NAG defined null
void function pointer, NULLFN, should be supplied in the call to nag opt qp. The algorithm
of nag opt qp requires only the product of H and a vector x; and in some cases the user may
obtain increased efficiency by providing a version of qphess that avoids the need to define the
elements of the matrix H explicitly.
qphess is not referenced if the problem is of type Nag FP or Nag LP, in which case qphess
should be replaced by NULLFN.
The specification of qphess is:

void qphess(Integer n, Integer jthcol, double h[], Integer tdh, double x[],
double hx[], Nag_Comm *comm)

n
Input: n, the number of variables.

jthcol
Input: jthcol specifies whether or not the vector x is a column of the identity
matrix. If jthcol = j > 0, then the vector x is the jth column of the identity
matrix, and hence Hx is the jth column of H, which can sometimes be computed
very efficiently and qphess may be coded to take advantage of this. However
special code is not necessary because x is always stored explicitly in the array x.
If jthcol = 0, x has no special form.

h[n*tdh]
Input: the matrix H of the QP objective function.
The matrix element Hij is stored in h[(i-1)*tdh + j-1] for i = 1, 2, . . . , n
and j = 1, 2, . . . , n. In some situations, it may be desirable to compute Hx
without accessing h – for example, if H is sparse or has special structure. (This
is illustrated in the function qphess1 in the example program in Section 6.) The
parameters h and tdh may then refer to any convenient array.

tdh
Input: the second dimension of the array h in the calling program.

x[n]
Input: the vector x.

hx[n]
Output: the product Hx.

[NP3491/6] 3.e04nfc.3

nag opt qp NAG C Library Manual

comm
Pointer to structure of type Nag Comm; the following members are relevant to
qphess.

flag – Integer
Input: comm->flag contains a non-negative number.
Output: if qphess resets comm->flag to some negative number nag opt qp
will terminate immediately with the error indicator NE USER STOP. If
fail is supplied to nag opt qp, fail.errnum will be set to the user’s setting
of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to qphess and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to qphess including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt qp these pointers may be allocated memory by the
user and initialized with various quantities for use by qphess when called
from nag opt qp.

Note: qphess should be tested separately before being used in conjunction with nag opt qp.
The input arrays h and x must not be changed within qphess.

x[n]
Input: an initial estimate of the solution.
Output: the point at which nag opt qp terminated. If fail.code = NE NOERROR,
NW DEAD POINT, NW SOLN NOT UNIQUE or NW NOT FEASIBLE, x contains an
estimate of the solution.

objf
Output: the value of the objective function at x if x is feasible, or the sum of infeasibilities
at x otherwise. If the problem is of type Nag FP and x is feasible, objf is set to zero.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt qp. These structure members offer the means of adjusting some of
the parameter values of the algorithm and on output will supply further details of the results.
A description of the members of options is given below in Section 8. Some of the results
returned in options can be used by nag opt qp to perform a ‘warm start’ if it is re-entered
(see the member start in Section 8.2).

If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt qp. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for user communication with user-supplied
functions; see the above description of qphess for details. If the user does not need to make
use of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt qp; comm will then be declared internally for use in calls to user-supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function. nag opt qp returns with fail.code = NE NOERROR if x is a strong local minimizer,

3.e04nfc.4 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

i.e., the reduced gradient is negligible, the Lagrange multipliers are optimal and Hr is positive
semi-definite.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 8.2). The default
print level of Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag opt qp.

The convention for numbering the constraints in the iteration results is that indices 1 to n refer
to the bounds on the variables, and indices n + 1 to n + mlin refer to the general constraints.
When the status of a constraint changes, the index of the constraint is printed, along with the
designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

The single line of intermediate results output on completion of each iteration gives:

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. During the optimality phase, the step can be greater than 1.0
only if the reduced Hessian is not positive-definite.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Obj is
the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd the number of simple bound constraints in the current working set.

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set. At the start of the optimality
phase, Nart provides an estimate of the number of nonpositive eigenvalues in the
reduced Hessian.

Nrz the dimension of the subspace in which the objective function is currently being
minimized. The value of Nrz is the number of variables minus the number of
constraints in the working set; i.e., Nrz = n − (Bnd + Lin + Nart).

Norm Gz the Euclidean norm of the reduced gradient. During the optimality phase, this
norm will be approximately zero after a unit step.

The printout of the final result consists of:

Varbl the name (V) and index j, for j = 1, 2, . . . , n of the variable.

[NP3491/6] 3.e04nfc.5

nag opt qp NAG C Library Manual

State the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed
at its current value). If Value lies outside the upper or lower bounds by more than
the feasibility tolerance, State will be ++ or -- respectively.

Value the value of the variable at the final iteration.

Lower bound the lower bound specified for the variable.
(None indicates that bl[j − 1] ≤ −inf bound.)

Upper bound the upper bound specified for the variable.
(None indicates that bu[j − 1] ≥ inf bound.)

Lagr mult the value of the Lagrange multiplier for the associated bound constraint. This will
be zero if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual the difference between the variable Value and the nearer of its bounds bl[j − 1]
and bu[j − 1].

The meaning of the printout for general constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon the name (L) and index j, for j = 1, 2, . . . ,mlin of the constraint.

5. Comments

A list of possible error exits and warnings from nag opt qp is given in Section 9. Scaling and
accuracy are considered in Section 10.

6. Example 1

This example problem is taken from Bunch and Kaufman (1980) and involves the minimization of
the quadratic function f(x) = cT x + 1

2xT Hx, where

c = (7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0)T

H =

1.69 1.00 2.00 3.00 4.00 5.00 6.00 7.00
1.00 1.69 1.00 2.00 3.00 4.00 5.00 6.00
2.00 1.00 1.69 1.00 2.00 3.00 4.00 5.00
3.00 2.00 1.00 1.69 1.00 2.00 3.00 4.00
4.00 3.00 2.00 1.00 1.69 1.00 2.00 3.00
5.00 4.00 3.00 2.00 1.00 1.69 1.00 2.00
6.00 5.00 4.00 3.00 2.00 1.00 1.69 1.00
7.00 6.00 5.00 4.00 3.00 2.00 1.00 1.69

subject to the bounds

−1.0 ≤ x1 ≤ 1.0
−2.1 ≤ x2 ≤ 2.0
−3.2 ≤ x3 ≤ 3.0
−4.3 ≤ x4 ≤ 4.0
−5.4 ≤ x5 ≤ 5.0
−6.5 ≤ x6 ≤ 6.0
−7.6 ≤ x7 ≤ 7.0
−8.7 ≤ x8 ≤ 8.0

and the general constraints

3.e04nfc.6 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

−x1 + x2 ≥ −1.00
− x2 + x3 ≥ −1.05

− x3 + x4 ≥ −1.10
− x4 + x5 ≥ −1.15

− x5 + x6 ≥ −1.20
− x6 + x7 ≥ −1.25

− x7 + x8 ≥ −1.30

The initial point is

x0 = (−1.0, −2.0, −3.0, −4.0, −5.0, −6.0, −7.0, −8.0)T .

The computed solution is

x∗ = (−1.0, −2.0, −3.05, −4.15, −5.3, 6.0, 7.0, 8.0)T .

Four bound constraints and four general constraints are active at the solution.

This example shows the simple use of nag opt qp where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 13. There is
one example program file, the main program of which calls both examples. The C functions for
the main program and Example 1 are given below. In Example 1 the problem is solved twice, first
with the Hessian explicit and Hx calculated by nag opt qp and then with the Hessian implicit and
Hx formed by a user supplied function, qphess1.

6.1. Program Text

/* nag_opt_qp (e04nfc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
* Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nage04.h>

static void qphess1(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm);

static void qphess2(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm);

static void qphess3(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm);

static void ex1(void);
static void ex2(void);

#define MAXN 10
#define MAXLIN 7
#define MAXBND MAXN+MAXLIN

main(void)
{

/* Two examples are called, ex1() uses the
* default settings to solve a problem while
* ex2() solves another problem with some
* of the optional parameters set by the user.
*/

Vprintf("e04nfc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

[NP3491/6] 3.e04nfc.7

nag opt qp NAG C Library Manual

static void ex1()
{

double a[MAXLIN][MAXN], h[MAXN][MAXN];
double x[MAXN], cvec[MAXN];
double bl[MAXBND], bu[MAXBND];
double bigbnd, objf;
Integer i, j, n, nclin, tda, tdh;
static NagError fail;

Vprintf("\nExample 1: default options used.\n");

fail.print = TRUE;

/* Define the problem. This example is due to Bunch and Kaufman,
* ‘A computational method for the indefinite quadratic programming
* problem ’, Linear Algebra and its Applications, 34, 341-370 (1980).
*
* h = the QP Hessian matrix.
* a = the general constraint matrix.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
*
* Set the actual problem dimensions.
* n = the number of variables.
* nclin = the number of general linear constraints (may be 0).
*/
n = 8;
nclin = 7;
tda = MAXN;
tdh = MAXN;

/* Define the value used to denote ‘‘infinite’’ bounds. */
bigbnd = 1.0e20;

for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
a[i][j] = 0.0;

for (i = 0; i < nclin; ++i)
{
a[i][i] = -1.0;
a[i][i+1] = 1.0;
bl[n + i] = -1.0 - 0.05*(double)i;
bu[n + i] = bigbnd;

}

for (j = 0; j < n; ++j)
{
bl[j] = -(double)(j+1) - 0.1*(double)(j);
bu[j] = (double)(j+1);
cvec[j] = (double)(7 - j);

}

for (i = 0; i < n; ++i)
{
for (j = i+1; j < n; ++j)
h[i][j] = (double)(ABS(i-j));

h[i][i] = 1.69;
}

/* Set the initial estimate of the solution. */
x[0] = -1.0;
x[1] = -2.0;
x[2] = -3.0;
x[3] = -4.0;
x[4] = -5.0;
x[5] = -6.0;
x[6] = -7.0;
x[7] = -8.0;

3.e04nfc.8 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

/* Solve the QP problem. */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,

NULLFN, x, &objf, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code == NE_NOERROR)
{
Vprintf("Re-solve problem with the Hessian defined by function qphess1.\n");

/* Set a new initial estimate of the solution. */
x[0] = -1.0;
x[1] = 12.0;
x[2] = -3.0;
x[3] = 14.0;
x[4] = -5.0;
x[5] = 16.0;
x[6] = -7.0;
x[7] = 18.0;

/* Solve the QP problem. */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)0, tdh,

qphess1, x, &objf, E04_DEFAULT, NAGCOMM_NULL, &fail);
}

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex1 */

static void qphess1(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm)

{
/* qphess1 computes the vector Hx = (H)*x for some matrix H
* that defines the Hessian of the required QP problem.
*
* In this version qphess the Hessian matrix is implicit.
* The array h[] is not accessed. There is no special coding
* for the case jthcol > 0
*/
Integer i, j;
double sum;

for (i = 0; i < n; ++i)
{
sum = 1.69*x[i];
for (j = 0; j < n; ++j)
sum += x[j]*(double)ABS(i - j);

hx[i] = sum;
}

} /* qphess1 */

6.2. Program Data

None, but there is an example data file which contains data and optional parameter values for
Example 2 below.

6.3. Program Results

e04nfc Example Program Results.

Example 1: default options used.

Parameters to e04nfc

Linear constraints............ 7 Number of variables........... 8

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 8
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
fmax_iter............... 75 max_iter................ 75

[NP3491/6] 3.e04nfc.9

nag opt qp NAG C Library Manual

hrows................... 8 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04nfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 0 0.0000e+00 1 1 6 0 0.00e+00

Itn 0 -- Feasible point found.
0 0 0 0.0e+00 0 1.5164e+03 1 1 5 1 9.75e+01
1 0 8 U 2.8e-01 0 1.7238e+02 2 1 5 0 0.00e+00
2 1 L 10 L 3.1e-03 0 1.6808e+02 1 2 5 0 0.00e+00
3 5 A 11 L 1.2e-02 0 1.5718e+02 1 3 4 0 0.00e+00
4 4 A 12 L 3.2e-02 0 1.3853e+02 1 4 3 0 0.00e+00
5 3 A 13 L 6.9e-02 0 1.1130e+02 1 5 2 0 0.00e+00
6 2 A 14 L 1.3e-01 0 7.4123e+01 1 6 1 0 0.00e+00
7 1 A 1 U 8.4e-01 0 -5.8516e+01 2 6 0 0 0.00e+00
8 13 L 0 1.0e+00 0 -8.7214e+01 2 5 0 1 0.00e+00
9 1 U 6 U 2.5e+00 0 -3.1274e+02 2 5 0 1 1.35e+02
10 0 1 L 1.4e-01 0 -5.6227e+02 3 5 0 0 0.00e+00
11 14 L 7 U 1.3e-01 0 -6.2149e+02 4 4 0 0 0.00e+00

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e+00 -1.0000e+00 1.0000e+00 3.045e+02 0.000e+00
V 2 FR -2.00000e+00 -2.1000e+00 2.0000e+00 0.000e+00 1.000e-01
V 3 FR -3.05000e+00 -3.2000e+00 3.0000e+00 0.000e+00 1.500e-01
V 4 FR -4.15000e+00 -4.3000e+00 4.0000e+00 0.000e+00 1.500e-01
V 5 FR -5.30000e+00 -5.4000e+00 5.0000e+00 0.000e+00 1.000e-01
V 6 UL 6.00000e+00 -6.5000e+00 6.0000e+00 -6.100e-01 0.000e+00
V 7 UL 7.00000e+00 -7.6000e+00 7.0000e+00 -2.442e+01 0.000e+00
V 8 UL 8.00000e+00 -8.7000e+00 8.0000e+00 -3.423e+01 0.000e+00

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 LL -1.00000e+00 -1.0000e+00 None 2.129e+02 1.110e-16
L 2 LL -1.05000e+00 -1.0500e+00 None 1.315e+02 0.000e+00
L 3 LL -1.10000e+00 -1.1000e+00 None 6.443e+01 0.000e+00
L 4 LL -1.15000e+00 -1.1500e+00 None 1.779e+01 -4.441e-16
L 5 FR 1.13000e+01 -1.2000e+00 None 0.000e+00 1.250e+01
L 6 FR 1.00000e+00 -1.2500e+00 None 0.000e+00 2.250e+00
L 7 FR 1.00000e+00 -1.3000e+00 None 0.000e+00 2.300e+00

Exit after 11 iterations.

Optimal QP solution found.

Final QP objective value = -6.2148782e+02

Re-solve problem with the Hessian defined by function qphess1.

Parameters to e04nfc

Linear constraints............ 7 Number of variables........... 8

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 8

3.e04nfc.10 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

inf_bound............... 1.00e+20 inf_step................ 1.00e+20
fmax_iter............... 75 max_iter................ 75
hrows................... 8 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04nfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 3 2.3550e+01 5 0 3 0 1.73e+00
1 2 U 10 L 4.0e+00 2 1.9600e+01 4 1 3 0 1.41e+00
2 4 U 12 L 7.8e+00 1 1.1750e+01 3 2 3 0 1.00e+00
3 6 U 14 L 1.2e+01 0 0.0000e+00 2 3 3 0 0.00e+00

Itn 3 -- Feasible point found.
3 0 0 0.0e+00 0 8.6653e+02 2 3 2 1 1.52e+02
4 0 9 L 1.0e-01 0 4.9824e+01 2 4 2 0 0.00e+00
5 2 A 11 L 4.5e-01 0 -5.6227e+02 2 5 1 0 0.00e+00
6 1 A 6 U 6.0e-11 0 -5.6227e+02 3 5 0 0 0.00e+00
7 14 L 7 U 1.3e-01 0 -6.2149e+02 4 4 0 0 0.00e+00

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e+00 -1.0000e+00 1.0000e+00 3.045e+02 0.000e+00
V 2 FR -2.00000e+00 -2.1000e+00 2.0000e+00 0.000e+00 1.000e-01
V 3 FR -3.05000e+00 -3.2000e+00 3.0000e+00 0.000e+00 1.500e-01
V 4 FR -4.15000e+00 -4.3000e+00 4.0000e+00 0.000e+00 1.500e-01
V 5 FR -5.30000e+00 -5.4000e+00 5.0000e+00 0.000e+00 1.000e-01
V 6 UL 6.00000e+00 -6.5000e+00 6.0000e+00 -6.100e-01 0.000e+00
V 7 UL 7.00000e+00 -7.6000e+00 7.0000e+00 -2.442e+01 0.000e+00
V 8 UL 8.00000e+00 -8.7000e+00 8.0000e+00 -3.423e+01 0.000e+00

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 LL -1.00000e+00 -1.0000e+00 None 2.129e+02 0.000e+00
L 2 LL -1.05000e+00 -1.0500e+00 None 1.315e+02 2.220e-16
L 3 LL -1.10000e+00 -1.1000e+00 None 6.443e+01 -4.441e-16
L 4 LL -1.15000e+00 -1.1500e+00 None 1.779e+01 -4.441e-16
L 5 FR 1.13000e+01 -1.2000e+00 None 0.000e+00 1.250e+01
L 6 FR 1.00000e+00 -1.2500e+00 None 0.000e+00 2.250e+00
L 7 FR 1.00000e+00 -1.3000e+00 None 0.000e+00 2.300e+00

Exit after 7 iterations.

Optimal QP solution found.

Final QP objective value = -6.2148782e+02

7. Further Description

This section gives a detailed description of the algorithm used in nag opt qp. This, and possibly
the next section, Section 8, may be omitted if the more sophisticated features of the algorithm and
software are not currently of interest.

7.1. Overview

nag opt qp is based on an inertia-controlling method that maintains a Cholesky factorization of
the reduced Hessian (see below). The method is based on that of Gill and Murray (1978) and
is described in detail by Gill et al (1991). Here we briefly summarize the main features of the
method. Where possible, explicit reference is made to the names of variables that are parameters

[NP3491/6] 3.e04nfc.11

nag opt qp NAG C Library Manual

of nag opt qp or appear in the printed output. nag opt qp has two phases: finding an initial feasible
point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic
objective function within the feasible region (the optimality phase). The computations in both
phases are performed by the same routines. The two-phase nature of the algorithm is reflected by
changing the function being minimized from the sum of infeasibilities to the quadratic objective
function. The feasibility phase does not perform the standard simplex method (i.e., it does not
necessarily find a vertex), except in the LP case when mlin ≤ n. Once any iterate is feasible, all
subsequent iterates remain feasible.

nag opt qp has been designed to be efficient when used to solve a sequence of related problems
– for example, within a sequential quadratic programming method for nonlinearly constrained
optimization. In particular, the user may specify an initial working set (the indices of the constraints
believed to be satisfied exactly at the solution); see the discussion of the optional parameter start
in Section 8.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new
iterate x̄ is defined by

x̄ = x + αp, (1)

where the steplength α is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
ftol; see Section 8.2). The working set is the current prediction of the constraints that hold with
equality at a solution of a linearly constrained QP problem. The search direction is constructed so
that the constraints in the working set remain unaltered for any value of the step length. For a bound
constraint in the working set, this property is achieved by setting the corresponding component of
the search direction to zero. Thus, the associated variable is fixed, and specification of the working
set induces a partition of x into fixed and free variables. During a given iteration, the fixed variables
are effectively removed from the problem; since the relevant components of the search direction are
zero, the columns of A corresponding to fixed variables may be ignored.

Let mw denote the number of general constraints in the working set and let nfx denote the number
of variables fixed at one of their bounds (mw and nfx are the quantities Lin and Bnd in the printed
output from nag opt qp). Similarly, let nfr (nfr = n − nfx) denote the number of free variables.
At every iteration, the variables are re-ordered so that the last nfx variables are fixed, with all other
relevant vectors and matrices ordered accordingly.

7.2. Definition of the Search Direction

Let Afr denote the mw by nfr sub-matrix of general constraints in the working set corresponding
to the free variables, and let pfr denote the search direction with respect to the free variables only.
The general constraints in the working set will be unaltered by any move along p if

Afrpfr = 0. (2)

In order to compute pfr, the TQ factorization of Afr is used:

AfrQfr = (0 T), (3)

where T is a non-singular mw by mw upper triangular matrix (i.e., tij = 0 if i > j), and the non-
singular nfr by nfr matrix Qfr is the product of orthogonal transformations (see Gill et al (1984)).
If the columns of Qfr are partitioned so that

Qfr = (Z Y),

where Y is nfr × mw, then the nz (nz = nfr − mw) columns of Z form a basis for the null space
of Afr. Let nr be an integer such that 0 ≤ nr ≤ nz, and let Zr denote a matrix whose nr columns
are a subset of the columns of Z. (The integer nr is the quantity Nrz in the printed output from

3.e04nfc.12 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

nag opt qp. In many cases, Zr will include all the columns of Z.) The direction pfr will satisfy (2)
if

pfr = Zrpr, (4)

where pr is any nr-vector.

Let Q denote the n by n matrix

Q =
(

Qfr

Ifx

)
,

where Ifx is the identity matrix of order nfx. Let Hq and gq denote the n by n transformed Hessian
and the transformed gradient

Hq = QT HQ and gq = QT (c + Hx)

and let the matrix of first nr rows and columns of Hq be denoted by Hr and the vector of the first
nr elements of gq be denoted by gr. The quantities Hr and gr are known as the reduced Hessian and
reduced gradient of f(x), respectively. Roughly speaking, gr and Hr describe the first and second
derivatives of an unconstrained problem for the calculation of pr.

At each iteration, a triangular factorization of Hr is available. If Hr is positive-definite, Hr = RT R,
where R is the upper triangular Cholesky factor of Hr. If Hr is not positive-definite, Hr = RT DR,
where D = diag(1, 1, . . . , 1, µ), with µ ≤ 0.

The computation is arranged so that the reduced gradient vector is a multiple of er, a vector of all
zeros except in the last (i.e., nrth) position. This allows the vector pr in (4) to be computed from
a single back-substitution

Rpr = γer, (5)

where γ is a scalar that depends on whether or not the reduced Hessian is positive-definite at x. In
the positive-definite case, x+p is the minimizer of the objective function subject to the constraints
(bounds and general) in the working set treated as equalities. If Hr is not positive-definite, pr

satisfies the conditions

pT
r Hrpr < 0 and gT

r pr ≤ 0,

which allow the objective function to be reduced by any positive step of the form x + αp.

7.3. The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z.
During the feasibility phase, the reduced gradient will usually be zero only at a vertex (although
it may be zero at non-vertices in the presence of constraint dependencies). During the optimality
phase, a zero reduced gradient implies that x minimizes the quadratic objective when the constraints
in the working set are treated as equalities. At a constrained stationary point, Lagrange multipliers
λc and λb for the general and bound constraints are defined from the equations

AT
frλc = gfr and λb = gfx − AT

fxλc. (6)

Given a positive constant δ of the order of the machine precision, a Lagrange multiplier λj

corresponding to an inequality constraint in the working set is said to be optimal if λj ≤ δ when
the associated constraint is at its upper bound, or if λj ≥ −δ when the associated constraint is at its
lower bound. If a multiplier is non-optimal, the objective function (either the true objective or the
sum of infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel;
see Section 8.3) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero,
there is no feasible point, and the user can force nag opt qp to continue until the minimum value
of the sum of infeasibilities has been found (see the discussion of the optional parameter min infeas
in Section 8.2). At this point, the Lagrange multiplier λj corresponding to an inequality constraint

[NP3491/6] 3.e04nfc.13

nag opt qp NAG C Library Manual

in the working set will be such that −(1 + δ) ≤ λj ≤ δ when the associated constraint is at its
upper bound, and −δ ≤ λj ≤ 1 + δ when the associated constraint is at its lower bound. Lagrange
multipliers for equality constraints will satisfy ||λj || ≤ 1 + δ.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero
elements of the search direction p are given by Zrpr (see (5)). The choice of step length is influenced
by the need to maintain feasibility with respect to the satisfied constraints. If Hr is positive-definite
and x+p is feasible, α will be taken as unity. In this case, the reduced gradient at x̄ will be zero, and
Lagrange multipliers are computed. Otherwise, α is set to αm, the step to the ‘nearest’ constraint
(with index Jadd; see Section 8.3), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to Afr: if the status of a general constraint
changes, a row of Afr is altered; if a bound constraint enters or leaves the working set, a column
of Afr changes. Explicit representations are recurred of the matrices T , Qfr and R; and of vectors
QT g, and QT c. The triangular factor R associated with the reduced Hessian is only updated during
the optimality phase.

One of the most important features of nag opt qp is its control of the conditioning of the working
set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal
elements of the TQ factor T (the printed value Cond T; see Section 8.3). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T.

nag opt qp includes a rigorous procedure that prevents the possibility of cycling at a point where
the active constraints are nearly linearly dependent (see Gill et al (1989)). The main feature of
the anti-cycling procedure is that the feasibility tolerance is increased slightly at the start of every
iteration. This not only allows a positive step to be taken at every iteration, but also provides,
whenever possible, a choice of constraints to be added to the working set. Let αm denote the
maximum step at which x + αmp does not violate any constraint by more than its feasibility
tolerance. All constraints at a distance α (α ≤ αm) along p from the current point are then viewed
as acceptable candidates for inclusion in the working set. The constraint whose normal makes the
largest angle with the search direction is added to the working set.

7.4. Choosing the Initial Working Set

At the start of the optimality phase, a positive-definite Hr can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive-definite by
definition, corresponding to the case when Afr contains nfr constraints.) The idea is to include as
many general constraints as necessary to ensure that the reduced Hessian is positive-definite.

Let Hz denote the matrix of the first nz rows and columns of the matrix Hq = QT HQ at the
beginning of the optimality phase. A partial Cholesky factorization is used to find an upper
triangular matrix R that is the factor of the largest positive-definite leading sub-matrix of Hz.
The use of interchanges during the factorization of Hz tends to maximize the dimension of R. (The
condition of R may be controlled using the optional parameter rank tol; see Section 8.2.) Let Zr

denote the columns of Z corresponding to R, and let Z be partitioned as Z = (ZrZa). A working
set for which Zr defines the null space can be obtained by including the rows of ZT

a as ‘artificial
constraints’. Minimization of the objective function then proceeds within the subspace defined by
Zr, as described in Section 7.2.

The artificially augmented working set is given by

Āfr =
(

Za
T

Afr

)
, (7)

so that pfr will satisfy Afrpfr = 0 and Za
T pfr = 0. By definition of the TQ factorization, Āfr

automatically satisfies the following:

ĀfrQfr =
(

Za
T

Afr

)
Qfr =

(
Za

T

Afr

)
(Zr Za Y) = (0 T̄),

where

T̄ =
(

I 0
0 T

)
,

3.e04nfc.14 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

and hence the TQ factorization of (7) is available trivially from T and Qfr without additional
expense.

The matrix Za is not kept fixed, since its role is purely to define an appropriate null space; the
TQ factorization can therefore be updated in the normal fashion as the iterations proceed. No
work is required to ‘delete’ the artificial constraints associated with Za when Zr

T gfr = 0, since this
simply involves repartitioning Qfr. The ‘artificial’ multiplier vector associated with the rows of
Za

T is equal to Za
T gfr, and the multipliers corresponding to the rows of the ‘true’ working set are

the multipliers that would be obtained if the artificial constraints were not present. If an artificial
constraint is ‘deleted’ from the working set, an A appears alongside the entry in the Jdel column
of the printed output (see Section 8.3).

The number of columns in Za and Zr, the Euclidean norm of Zr
T gfr, and the condition estimator

of R appear in the printed output as Nart, Nrz, Norm Gz and Cond Rz (see Section 8.3).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of nag opt qp does not usually perform simplex steps (in the
traditional sense), there is one exception: a linear program with fewer general constraints than
variables (i.e., mlin ≤ n). (Use of the simplex method in this situation leads to savings in storage.)
At the starting point, the ‘natural’ working set (the set of constraints exactly or nearly satisfied at
the starting point) is augmented with a suitable number of ‘temporary’ bounds, each of which has
the effect of temporarily fixing a variable at its current value. In subsequent iterations, a temporary
bound is treated as a standard constraint until it is deleted from the working set, in which case it
is never added again. If a temporary bound is ‘deleted’ from the working set, an F (for ‘Fixed’)
appears alongside the entry in the Jdel column of the printed output (see Section 8.3).

8. Optional Parameters

A number of optional input and output parameters to nag opt qp are available through the structure
argument options, type Nag E04 Opt. A parameter may be selected by assigning an appropriate
value to the relevant structure member; those parameters not selected will be assigned default
values. If no use is to be made of any of the optional parameters the user should use the NAG
defined null pointer, E04 DEFAULT, in place of options when calling nag opt qp; the default settings
will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must
be done directly in the calling program; they cannot be assigned using nag opt read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag opt qp
together with their default values where relevant. The number ε is a generic notation for machine
precision (see nag machine precision (X02AJC)).

[NP3491/6] 3.e04nfc.15

nag opt qp NAG C Library Manual

Nag ProblemType prob Nag QP2
Nag Start start Nag Cold
Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Integer fmax iter max(50,5(n+nclin))
Integer max iter max(50,5(n+nclin))
Boolean min infeas FALSE
double crash tol 0.01
double ftol

√
ε

double optim tol ε0.8

Integer reset ftol 10000
Integer fcheck 50
double inf bound 1020

double inf step max(inf bound,1020)
Integer hrows n
Integer max df n
double rank tol 100ε
Integer *state size n+nclin
double *ax size nclin
double *lambda size n+nclin
Integer iter
Integer nf

8.2. Description of Optional Parameters

prob – Nag ProblemType Default = Nag QP2

Input: specifies the type of objective function to be minimized during the optimality phase.
The following are the six possible values of prob and the size of the arrays h and cvec that
are required to define the objective function:

Nag FP h and cvec not accessed;

Nag LP h not accessed, cvec[n] required;

Nag QP1 h[n∗tdh] symmetric, cvec not referenced;

Nag QP2 h[n∗tdh] symmetric, cvec[n] required;

Nag QP3 h[n∗tdh] upper trapezoidal, cvec not referenced;

Nag QP4 h[n∗tdh] upper trapezoidal, cvec[n] required.

If H = 0, i.e., the objective function is purely linear, the efficiency of nag opt qp may be
increased by specifying prob as Nag LP.
Constraint: options.prob = Nag FP or Nag LP or Nag QP1 or Nag QP2 or Nag QP3 or
Nag QP4.

start – Nag Start Default = Nag Cold

Input: specifies how the initial working set is chosen. With options.start = Nag Cold,
nag opt qp chooses the initial working set based on the values of the variables and constraints
at the initial point. Broadly speaking, the initial working set will include equality constraints
and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within
crash tol; see below).

With options.start = Nag Warm, the user must provide a valid definition of every element
of the array pointer options.state (see below for the definition of this member of options).
nag opt qp will override the users’ specification of state if necessary, so that a poor choice of
the working set will not cause a fatal error. Nag Warm will be advantageous if a good estimate
of the initial working set is available – for example, when nag opt qp is called repeatedly to
solve related problems.
Constraint: options.start = Nag Cold or Nag Warm.

3.e04nfc.16 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt qp will be printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt qp. The following values are
available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables
x, the constraint values Ax and the constraint status also printed
at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (3) of
the working set, and the diagonal elements of the upper triangular
matrix R printed at each iteration.

Details of each level of results printout are described in Section 8.3.
Constraint: options.print level = Nag NoPrint or Nag Soln or Nag Iter or Nag Soln Iter or
Nag Iter Long or Nag Soln Iter Long or Nag Soln Iter Const or Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL

Input: printing function defined by the user; the prototype of print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 8.3.1 below for further details.

fmax iter – Integer Default = max(50,5(n+nclin))
max iter – Integer Default = max(50,5(n+nclin))

Input: fmax iter specifies the maximum number of iterations allowed in the feasibility phase.
max iter specifies the maximum number of iterations permitted in the optimality phase.

If the user wishes to check that a call to nag opt qp is correct before attempting to solve the
problem in full then fmax iter may be set to 0. No iterations will then be performed but the
initialization stages prior to the first iteration will be processed and a listing of parameter
settings output, if options.list = TRUE (the default setting).
Constraint: options.fmax iter ≥ 0 and options.max iter ≥ 0.

min infeas – Boolean Default = FALSE

Input: min infeas specifies whether nag opt qp should minimize the sum of infeasibilities if
no feasible point exists for the constraints. If min infeas = FALSE then nag opt qp will
terminate as soon as it is evident that the problem is infeasible, in which case the final point
will generally not be the point at which the sum of infeasibilities is minimized. If min infeas
= TRUE, nag opt qp will continue until the sum of infeasibilities is minimized.

[NP3491/6] 3.e04nfc.17

nag opt qp NAG C Library Manual

crash tol – double Default = 0.01
Input: crash tol is used in conjunction with the optional parameter start when start has
the default setting, i.e., options.start = Nag Cold, nag opt qp selects an initial working set.
The initial working set will include bounds or general inequality constraints that lie within
crash tol of their bounds. In particular, a constraint of the form aj

T x ≥ l will be included in
the initial working set if |aj

T x − l| ≤ crash tol × (1 + |l|).
Constraint: 0.0 ≤ options.crash tol ≤ 1.0.

ftol – double Default =
√

ε

Input: ftol defines the maximum acceptable absolute violation in each constraint at a ‘feasible’
point. For example, if the variables and the coefficients in the general constraints are of order
unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify
ftol as 10−6.

nag opt qp attempts to find a feasible solution before optimizing the objective function. If the
sum of infeasibilities cannot be reduced to zero, options.min infeas (see above) can be used
to find the minimum value of the sum. Let Sinf be the corresponding sum of infeasibilities.
If Sinf is quite small, it may be appropriate to raise ftol by a factor of 10 or 100. Otherwise,
some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the
tolerance ftol.
Constraint: options.ftol > 0.0.

optim tol – double Default = ε0.8

Input: options.optim tol defines the tolerance used to determine whether the bounds and
generated constraints have the correct sign for the solution to be judged optimal.

reset ftol – Integer Default = 5
Input: this option is part of an anti-cycling procedure designed to guarantee progress even
on highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the
constraints by a small amount. Suppose that the value of the optional parameter ftol is δ.
Over a period of reset ftol iterations, the feasibility tolerance actually used by nag opt qp
increases from 0.5δ to δ (in steps of 0.5δ/reset ftol).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities.
First, all variables whose upper or lower bounds are in the working set are moved exactly
onto their bounds. A count is kept of the number of nontrivial adjustments made. If the
count is positive, iterative refinement is used to give variables that satisfy the working set to
(essentially) machine precision. Finally, the current feasibility tolerance is reinitialized to
0.5δ.

If a problem requires more than reset ftol iterations, the resetting procedure is invoked and a
new cycle of reset ftol iterations is started with reset ftol incremented by 10. (The decision
to resume the feasibility phase or optimality phase is based on comparing any constraint
infeasibilities with δ.)

The resetting procedure is also invoked when nag opt qp reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any
nontrivial adjustments are made, iterations are continued.
Constraint: 0 < options.reset ftol < 10000000.

fcheck – Integer Default = 50
Input: every fcheck iterations, a numerical test is made to see if the current solution x satisfies
the constraints in the working set. If the largest residual of the constraints in the working
set is judged to be too large, the current working set is re-factorized and the variables are
recomputed to satisfy the constraints more accurately.
Constraint: options.fcheck ≥ 1.

3.e04nfc.18 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

inf bound – double Default = 1020

Input: inf bound defines the ‘infinite’ bound in the definition of the problem constraints. Any
upper bound greater than or equal to inf bound will be regarded as plus infinity (and similarly
for a lower bound less than or equal to −inf bound).
Constraint: options.inf bound > 0.0.

inf step – double Default = max(inf bound,1020)
Input: inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. (Note that an unbounded solution can occur only when the
Hessian is not positive-definite.) If the change in x during an iteration would exceed the value
of inf step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf step > 0.0.

hrows – Integer Default = n

Input: specifies m, the number of rows of the quadratic term H of the QP objective function.
The default value of hrows is n, the number of variables of the problem, except that if the
problem is specified as type Nag FP or Nag LP, the default value of hrows is zero.

If the problem is of type QP, hrows will usually be n, the number of variables. However, a
value of hrows less than n is appropriate for Nag QP3 or Nag QP4 if H is an upper trapezoidal
matrix with m rows. Similarly, hrows may be used to define the dimension of a leading block
of non-zeros in the Hessian matrices of Nag QP1 or Nag QP2, in which case the last n − m
rows and columns of H are assumed to be zero.
Constraint: 0 ≤ options.hrows ≤ n.

max df – Integer Default = n

Input: places a limit on the storage allocated for the triangular factor R of the reduced
Hessian Hr. Ideally, max df should be set slightly larger than the value of nr expected at the
solution. It need not be larger than mn +1, where mn is the number of variables that appear
nonlinearly in the quadratic objective function. For many problems it can be much smaller
than mn.

For quadratic problems, a minimizer may lie on any number of constraints, so that nr may
vary between 1 and n. The default value is therefore normally n but if the optional parameter
hrows is specified then the default value of max df is set to the value in hrows.
Constraint: 1 ≤ options.max df ≤ n.

rank tol – double Default = 100ε
Input: rank tol enables the user to control the condition number of the triangular factor R
(see Section 7). If ρi denotes the function ρi = max{|R11|, |R22|, . . . , |Rii|}, the dimension of
R is defined to be smallest index i such that |Ri+1,i+1| ≤ rank tol × |ρi+1|.
Constraint: 0.0 ≤ options.rank tol < 1.0.

state – Integer * Default memory = n+nclin

Input: state need not be set if the default option of options.start = Nag Cold is used as
n+nclin values of memory will be automatically allocated by nag opt qp.
If the option start = Nag Warm has been chosen, state must point to a minimum of n+nclin
elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag opt qp from the calling program, using the same values of n
and nclin and start = Nag Cold. If a previous call has not been made sufficient memory must
be allocated to state by the user.

When a warm start is chosen state should specify the desired status of the constraints at the
start of the feasibility phase. More precisely, the first n elements of state refer to the upper
and lower bounds on the variables, and the next mlin elements refer to the general linear
constraints (if any). Possible values for state[j] are as follows:

[NP3491/6] 3.e04nfc.19

nag opt qp NAG C Library Manual

state[j] Meaning

0 The corresponding constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This value
should only be specified if bl[j] = bu[j]. The values 1,2 or 3 all have the same
effect when bl[j] = bu[j].

The values −2, −1 and 4 are also acceptable but will be reset to zero by the function. In
particular, if nag opt qp has been called previously with the same values of n and nclin, state
already contains satisfactory information. (See also the description of the optional parameter
start.) The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in state.

Output: if nag opt qp exits with a value of fail.code = NE NOERROR, NW DEAD POINT,
NW SOLN NOT UNIQUE or NW NOT FEASIBLE, the values in state indicate the status of
the constraints in the working set at the solution. Otherwise, state indicates the composition
of the working set at the final iterate. The significance of each possible value of state[j] is as
follows:

state[j] Meaning

−2 The constraint violates its lower bound by more than the feasibility tolerance.

−1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This inequality constraint is included in the working set at its lower bound.

2 This inequality constraint is included in the working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of state
can occur only when bl[j] = bu[j].

4 This corresponds to optimality being declared with x[j] being temporarily fixed
at its current value. This value of state can only occur when fail.code =
NW DEAD POINT or NW SOLN NOT UNIQUE.

ax – double * Default memory = nclin

Input: nclin values of memory will be automatically allocated by nag opt qp and this is the
recommended method of use of options.ax. However a user may supply memory from the
calling program.
Output: if nclin > 0, ax points to the final values of the linear constraints Ax.

lambda – double * Default memory = n+nclin

Input: n+nclin values of memory will be automatically allocated by nag opt qp and this is
the recommended method of use of options.lambda. However a user may supply memory
from the calling program.
Output: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next mlin elements contain the multipliers for the general linear constraints
(if any). If state[j] = 0 (i.e., constraint j is not in the working set), lambda[j] is zero. If x
is optimal, lambda[j] should be non-negative if state[j] = 1, non-positive if state[j] = 2 and
zero if state[j] = 4.

iter – Integer

Output: the total number of iterations performed in the feasibility phase and (if appropriate)
the optimality phase.

3.e04nfc.20 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

nf – Integer
Output: the number of times the product Hx has been calculated (i.e., number of calls of
qphess).

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list
and options.print level (see Section 8.2). If list = TRUE then the parameter values to nag opt qp
are listed, whereas the printout of results is governed by the value of print level. The default of
print level = Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes all of the possible levels of results printout available from nag opt qp.

The convention for numbering the constraints in the iteration results is that indices 1 to n refer
to the bounds on the variables, and indices n + 1 to n + mlin refer to the general constraints.
When the status of a constraint changes, the index of the constraint is printed, along with the
designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

When print level = Nag Iter or Nag Soln Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the
given iteration.

Itn the iteration count.

Jdel the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step the step taken along the computed search direction. If a constraint is added during
the current iteration (i.e., Jadd is positive), Step will be the step to the nearest
constraint. During the optimality phase, the step can be greater than 1.0 only if
the reduced Hessian is not positive-definite.

Ninf the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Obj is the value
of the objective function. The output line for the final iteration of the feasibility
phase (i.e., the first iteration for which Ninf is zero) will give the value of the true
objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd the number of simple bound constraints in the current working set.

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set, i.e., the number of columns
of Za (see Section 7). At the start of the optimality phase, Nart provides an
estimate of the number of nonpositive eigenvalues in the reduced Hessian.

Nrz the number of columns of Zr (see Section 7). Nrz is the dimension of the subspace
in which the objective function is currently being minimized. The value of Nrz is
the number of variables minus the number of constraints in the working set; i.e.,
Nrz = n − (Bnd + Lin + Nart).

[NP3491/6] 3.e04nfc.21

nag opt qp NAG C Library Manual

The value of nz, the number of columns of Z (see Section 7) can be calculated as
nz = n − (Bnd + Lin). A zero value of nz implies that x lies at a vertex of the
feasible region.

Norm Gz ‖Zr
T gfr‖, the Euclidean norm of the reduced gradient with respect to Zr. During

the optimality phase, this norm will be approximately zero after a unit step.

If print level = Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full the
line of printout is extended to give the following information. (Note this longer line extends over
more than 80 characters.)

NOpt the number of non-optimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

Min LM the value of the Lagrange multiplier associated with the deleted constraint. If Min
LM is negative, a lower bound constraint has been deleted; if Min LM is positive, an
upper bound constraint has been deleted. If no multipliers are calculated during a
given iteration, Min LM will be zero.

Cond T a lower bound on the condition number of the working set.

Cond Rz a lower bound on the condition number of the triangular factor R (the Cholesky
factor of the current reduced Hessian). If the problem is specified to be of type
Nag LP, Cond Rz is not printed.

Rzz the last diagonal element µ of the matrix D associated with the RT DR factorization
of the reduced Hessian Hr (see Section 7.2). Rzz is only printed if Hr is not positive-
definite (in which case µ �= 1). If the printed value of Rzz is small in absolute
value, then Hr is approximately singular. A negative value of Rzz implies that the
objective function has negative curvature on the current working set.

When options.print level = Nag Soln Iter Const or Nag Soln Iter Full more detailed results are
given at each iteration. For the setting Nag Soln Iter Const additional values output are:

Value of x the value of x currently held in x.

State the current value of options.state associated with x.

Value of Ax the value of Ax currently held in options.ax.

State the current value of options.state associated with Ax.

Also printed are the Lagrange Multipliers for the bound constraints, linear constraints and artificial
constraints.

If print level = Nag Soln Iter Full then the diagonal of T and Zr are also output at each iteration.

When print level = Nag Soln, Nag Soln Iter, Nag Soln Iter Const or Nag Soln Iter Full the final
printout from nag opt qp includes a listing of the status of every variable and constraint. The
following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, . . . , n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the feasibility tolerance, State will be ++ or -- respectively.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable.
(None indicates that bl[j − 1] ≤ −inf bound.)

3.e04nfc.22 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

Upper bound is the upper bound specified for the variable.
(None indicates that bu[j − 1] ≥ inf bound.)

Lagr mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds bl[j − 1]
and bu[j − 1].

The meaning of the printout for general constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon is the name (L) and index j, for j = 1, 2, . . . ,mlin of the constraint.

8.3.1. Output of results via a user defined printing function

The user may also specify their own print function for output of iteration results and the final
solution by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped by a user who only wishes to use the default printing
facilities.

When a user defined function is assigned to options.print fun this will be called in preference to
the internal print function of nag opt qp. Calls to the user defined function are again controlled by
means of the options.print level member. Information is provided through st and comm, the two
structure arguments to print fun.

If comm->it prt = TRUE then the results from the last iteration of nag opt qp are set in the
following members of st:

first – Boolean
TRUE on the first call to print fun.

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

jdel – Integer
index of constraint deleted.

jadd – Integer
index of constraint added.

step – double
the step taken along the current search direction.

ninf – Integer
the number of infeasibilities.

f – double
the value of the current objective function.

bnd – Integer
number of bound constraints in the working set.

lin – Integer
number of general linear constraints in the working set.

nart – Integer
number of artificial constraints in the working set.

nrz – Integer
number of columns of Zr.

[NP3491/6] 3.e04nfc.23

nag opt qp NAG C Library Manual

norm gz – double
Euclidean norm of the reduced gradient, ‖Zr

T gfr‖.
nopt – Integer

number of non-optimal Lagrange multipliers.

min lm – double
value of the Lagrange multiplier associated with the deleted constraint.

condt – double
a lower bound on the condition number of the working set.

x – double *
x points to the n memory locations holding the current point x.

ax – double *
ax points to the nclin memory locations holding the current values Ax.

state – Integer *
state points to the n+nclin memory locations holding the status of the variables and general
linear constraints. See Section 8.2 for a description of the possible status values.

t – double *
the upper triangular matrix T with st->lin columns. Matrix element i, j is held in
st->t[(i − 1)∗st->tdt+j − 1].

tdt – Integer
the trailing dimension for st->t.

If st->rset = TRUE then the problem is QP, nag opt qp is executing the optimality phase and the
following members of st are also set:

r – double *
the upper triangular matrix R with st->nrz columns. Matrix element i, j is held in
st->r[(i − 1)∗st->tdr+j − 1].

tdr – Integer
the trailing dimension for st->r.

condr – double
a lower bound on the condition number of the triangular factor R.

rzz – double
last diagonal element µ of the matrix D.

If comm->new lm = TRUE then the Lagrange multipliers have been updated and the following
members of st are set:

kx – Integer *
Indices of the bound constraints with associated multipliers.
Value of st->kx[i] is the index of the constraint with multiplier st->lambda[i] for i =
0, 1, . . . ,st->bnd−1.

kactive – Integer *
Indices of the linear constraints with associated multipliers.
Value of st->kactive[i] is the index of the constraint with multiplier st->lambda[st->bnd+ i]
for i = 0, 1, . . . ,st->lin−1.

lambda – double *
the multipliers for the constraints in the working set. lambda[i] for i = 0, 1, . . . ,st->bnd−1
hold the multipliers for the bound constraints while the multipliers for the linear constraints
are held at indices i = st->bnd,. . .,st->bnd+st->lin−1.

gq – double *
st->gq[i] for i = 0, 1, . . . ,st->nart−1 hold the multipliers for the artificial constraints.

3.e04nfc.24 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

The following members of st are also relevant and apply when comm->it prt or comm->new lm is
TRUE.

refactor – Boolean
TRUE if iterative refinement performed. See Section 8.2 and optional parameter reset ftol.

jmax – Integer
if st->refactor = TRUE then st->jmax holds the index of the constraint with the maximum
violation.

errmax – double
if st->refactor = TRUE then st->errmax holds the value of the maximum violation.

moved – Boolean
TRUE if some variables have been moved to their bounds. See the optional parameter
reset ftol.

nmoved – Integer
if st->moved = TRUE then st->nmoved holds the number of variables which were moved to
their bounds.

rowerr – Boolean
TRUE if some constraints are not satisfied to within options.ftol.

feasible – Boolean
TRUE when a feasible point has been found.

If comm->sol prt = TRUE then the final result from nag opt qp is available and the following
members of st are set:

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

x – double *
x points to the n memory locations holding the final point x.

f – double
the final objective function value or, if x is not feasible, the sum of infeasibilities. If the
problem is of type Nag FP and x is feasible then f is set to zero.

ax – double *
ax points to the nclin memory locations holding the final values Ax.

state – Integer *
state points to the n+nclin memory locations holding the final status of the variables and
general linear constraints. See Section 8.2 for a description of the possible status values.

lambda – double *
lambda points to the n+nclin final values of the Lagrange multipliers.

bl – double *
bl points to the n+nclin lower bound values.

bu – double *
bu points to the n+nclin upper bound values.

endstate – Nag EndState
the state of termination of nag opt qp. Possible values of endstate and their correspondence
to the exit value of fail.code are:

[NP3491/6] 3.e04nfc.25

nag opt qp NAG C Library Manual

Value of endstate Value of fail.code

Nag Feasible and Nag Optimal NE NOERROR
Nag Deadpoint and Nag Weakmin If the problem is QP NW DEADPOINT

otherwise NW SOLN NOT UNIQUE
Nag Unbounded NE UNBOUNDED
Nag Infeasible NW NOT FEASIBLE
Nag Too Many Iter NW TOO MANY ITER
Nag Hess Too Big NE HESS TOO BIG

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

new lm – Boolean
will be TRUE when the Lagrange multipliers have been updated.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt qp or during a call to qphess or print fun. The type
Pointer will be void * with a C compiler that defines void * and char * otherwise.

9. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in qphess. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, nclin must not be less than 0: nclin = 〈value〉.

NE 2 INT ARG LT
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.
On entry, tdh = 〈value〉 while n = 〈value〉. These parameters must satisfy tdh ≥ n.
On entry, tdh = 〈value〉 while options.hrows = 〈value〉. These parameters must satisfy tdh
≥ hrows.

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry parameter options.print level had an illegal value.
On entry parameter options.prob had an illegal value.
On entry parameter options.start had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.hrows not valid. Correct range is n ≥ hrows ≥ 0.
Value 〈value〉 given to options.max df not valid. Correct range is n ≥ max df ≥ 1.
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.
Value 〈value〉 given to options.fmax iter not valid. Correct range is fmax iter ≥ 0.
Value 〈value〉 given to options.fcheck not valid. Correct range is fcheck ≥ 1.

NE INVALID INT RANGE 2
Value 〈value〉given to options.reset ftol not valid. Correct range is 0 < reset ftol < 10000000.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.crash tol not valid. Correct range is 0.0 ≤ crash tol ≤ 1.0.
Value 〈value〉 given to options.rank tol not valid. Correct range is 0.0 ≤ rank tol < 1.0.

3.e04nfc.26 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

NE INVALID REAL RANGE F
Value 〈value〉 given to options.ftol not valid. Correct range is ftol > 0.0.
Value 〈value〉 given to options.inf bound not valid. Correct range is inf bound > 0.0.
Value 〈value〉 given to options.inf step not valid. Correct range is inf step > 0.0.

NE CVEC NULL
options.prob = 〈value〉 but argument cvec = NULL.

NE H NULL
options.prob = 〈value〉, qphess is NULL but argument h is also NULL. If the default function
for qphess is to be used for this problem then an array must be supplied in parameter h.

NE WARM START
options.start = Nag Warm but pointer options.state = NULL.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE BOUND LCON
The lower bound for linear constraint 〈value〉 (array element bl[〈value〉]) is greater than the
upper bound.

NE STATE VAL
options.state[〈value〉] is out of range. state[〈value〉] = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

If one of the above exits occurs, no values will have been assigned to objf, or to options.ax and
options.lambda. x and options.state will be unchanged.

NW DEAD POINT
Iterations terminated at a dead point (check the optimality conditions).

The necessary conditions for optimality have been satisfied but the sufficient conditions are
not. (The reduced gradient is negligible, the Lagrange multipliers are optimal, but Hr is
singular or there are some very small multipliers.) If H is not positive-definite, x is not
necessarily a local solution of the problem and verification of optimality requires further
information.

NW SOLN NOT UNIQUE
Optimal solution is not unique.

The necessary conditions for optimality have been satisfied but the sufficient conditions are
not. (The reduced gradient is negligible, the Lagrange multipliers are optimal, but Hr is
singular or there are some very small multipliers.) If H is positive semi-definite, x gives the
global minimum value of the objective function, but the final x is not unique.

NE UNBOUNDED
Solution appears to be unbounded.

This value of fail.code implies that a step as large as options.inf step would have to be taken in
order to continue the algorithm. This situation can occur only when H is not positive-definite
and at least one variable has no upper or lower bound.

NW NOT FEASIBLE
No feasible point was found for the linear constraints.

It was not possible to satisfy all the constraints to within the feasibility tolerance. In this
case, the constraint violations at the final x will reveal a value of the tolerance for which a
feasible point will exist – for example, if the feasibility tolerance for each violated constraint
exceeds its Residual at the final point. The user should check that there are no constraint
redundancies. If the data for the constraints are accurate only to the absolute precision σ,
the user should ensure that the value of the optional parameter ftol is greater than σ. For
example, if all elements of A are of order unity and are accurate only to three decimal places,
the optional parameter ftol should be at least 10−3.

[NP3491/6] 3.e04nfc.27

nag opt qp NAG C Library Manual

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

The value of the optional parameter max iter may be too small. If the method appears to
be making progress (e.g., the objective function is being satisfactorily reduced), increase the
value of options.max iter and rerun nag opt qp (possibly using the options.start = Nag Warm
facility to specify the initial working set).

NE HESS TOO BIG
Reduced Hessian exceeds assigned dimension. options.max df = 〈value〉.
The algorithm needed to expand the reduced Hessian when it was already at its maximum
dimension, as specified by the optional parameter max df.

The value of the parameter max df is too small. Rerun nag opt qp with a larger value
(possibly using the start = Nag Warm facility to specify the initial working set).

NW OVERFLOW WARN
Serious ill conditioning in the working set after adding constraint 〈value〉. Overflow may
occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter ftol and re-running the program. If the
message recurs even after this change, the offending linearly dependent constraint j must be
removed from the problem.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

10. Further Comments

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem.
In the absence of better information it is usually sensible to make the Euclidean lengths of each
constraint of comparable magnitude. See the Chapter Introduction and Gill et al(1986) for further
information and advice.

10.1. Accuracy

nag opt qp implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

11. References

Bunch J R and Kaufman L C (1980) A Computational Method for the Indefinite Quadratic
Programming Problem Linear Algebra and its Applications 34 341–370.

Gill P E, Hammarling S J, Murray W, Saunders M A and Wright M H (1986) User’s Guide for
LSSOL (Version 1.0): A Fortran Package for Constrained Least-squares and Convex Quadratic
Programming Report SOL 86-1, Department of Operations Research, Stanford University.

Gill P E and Murray W (1978) Numerically Stable Methods for Quadratic Programming
Mathematical Programming 14 349–372.

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for Optimization Problems
with a Mixture of Bounds and General Linear Constraints ACM Trans. Math. Softw. 10
282–298.

Gill P E, Murray W, Saunders M A and Wright M H (1989) A Practical Anti-cycling Procedure
for Linearly Constrained Optimization Mathematical Programming 45 437–474.

3.e04nfc.28 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling Methods for General
Quadratic Programming SIAM Review 33 1–36.

Pardalos P M and Schnitger G (1988) Checking Local Optimality in Constrained Quadratic
Programming is NP-hard Operations Research Letters 7 33–35.

12. See Also

nag opt lp (e04mfc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

13. Example 2

To minimize the quadratic function f(x) = cT x + 1
2xT Hx, where

c = (−0.02, −0.2, −0.2, −0.2, −0.2, 0.04, 0.04)T

H =

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 −2 −2
0 0 0 0 0 −2 −2

subject to the bounds

−0.01 ≤ x1 ≤ 0.01
−0.10 ≤ x2 ≤ 0.15
−0.01 ≤ x3 ≤ 0.03
−0.04 ≤ x4 ≤ 0.02
−0.10 ≤ x5 ≤ 0.05
−0.01 ≤ x6

−0.01 ≤ x7

and the general constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = −0.13
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ −0.0049
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ −0.0064
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ −0.0037
0.02x1 + 0.03x2 + 0.01x5 ≤ −0.0012

−0.0992 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

−0.003 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 0.002

The initial point, which is infeasible, is

x0 = (−0.01, −0.03, 0.0, −0.01, −0.1, 0.02, 0.01)T .

The computed solution (to five figures) is

x∗ = (−0.01, −0.069865, 0.018259, −0.024261, −0.062006, 0.013054, 0.0040665)T .

One bound constraint and four general constraints are active at the solution.

This example shows the use of certain optional parameters. Option values are assigned directly
within the program text and by reading values from a data file. The options structure is declared
and initialized by nag opt init (e04xxc), a value is then assigned directly to option inf bound and
two further options are read from the data file by use of nag opt read (e04xyc). nag opt qp is then
called to solve the problem using the function qphess2, with the Hessian implicit, for argument

[NP3491/6] 3.e04nfc.29

nag opt qp NAG C Library Manual

qphess. On successful return two further options are set, selecting a warm start and a reduced level
of printout, and the problem is solved again using the function qphess3. In this case the Hessian
is defined explicitly. Finally the memory freeing function nag opt free (e04xzc) is used to free the
memory assigned to the pointers in the options structure. Users should not use the standard C
function free() for this purpose.

13.1. Program Text

static void ex2()
{

double x[MAXN], cvec[MAXN];
double a[MAXLIN][MAXN], h[MAXN][MAXN];
double bl[MAXBND], bu[MAXBND];
double objf;
Integer tda, tdh;
Integer i, j, n, nclin, nbnd;
Boolean print;
Nag_E04_Opt options;
static NagError fail, fail2;

Vprintf("\nExample 2: some optional parameters are set.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */

fail.print = TRUE;
fail2.print = TRUE;

/* Set the actual problem dimensions.
* n = the number of variables.
* nclin = the number of general linear constraints (may be 0).
*/
tda = MAXN;
tdh = MAXN;
n = 7;
nclin = 7;

/* cvec = the coefficients of the explicit linear term of f(x).
* a = the linear constraint matrix.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
*/

/* Read the coefficients of the explicit linear term of f(x). */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf",&cvec[i]);

/* Read the linear constraint matrix A. */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf",&a[i][j]);

/* Read the bounds. */
nbnd = n + nclin;
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bl[i]);

Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bu[i]);

/* Read the initial estimate of x. */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf",&x[i]);

e04xxc(&options); /* Initialise options structure */

/* Set one option directly

3.e04nfc.30 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

* Bounds >= inf_bound will be treated as plus infinity.
* Bounds <= -inf_bound will be treated as minus infinity.
*/
options.inf_bound = 1.0e21;

/* Read remaining option values from file */
fail.print = TRUE;
print = TRUE;
e04xyc("e04nfc", "stdin", &options, print, "stdout", &fail);

/* Solve the problem from a cold start.
* The Hessian is defined implicitly by function qphess2.
*/
if (fail.code == NE_NOERROR)
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)0, tdh,

qphess2, x, &objf, &options, NAGCOMM_NULL, &fail);

if (fail.code == NE_NOERROR)
{
/* The following is for illustrative purposes only. We do a warm
* start with the final working set of the previous run.
* This time we store the Hessian explicitly in h[][], and use
* the corresponding function qphess3().
* Only the final solution from the results is printed.
*/
Vprintf("\nA run of the same example with a warm start:\n");

options.start = Nag_Warm;
options.print_level = Nag_Soln;

for (i = 0; i < n; ++i)
{

for (j = 0; j < n; ++j) h[i][j] = 0.0;
if (i <= 4) h[i][i] = 2.0;
else h[i][i] = -2.0;

}
h[2][3] = 2.0;
h[3][2] = 2.0;
h[5][6] = -2.0;
h[6][5] = -2.0;

/* Solve the problem again. */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,

qphess3, x, &objf, &options, NAGCOMM_NULL, &fail);
}

/* Free memory allocated by e04nfc to pointers in options */
e04xzc(&options, "all", &fail2);

if (fail.code != NE_NOERROR || fail2.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex2 */

static void qphess2(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm)

{
/* In this version of qphess the Hessian matrix is implicit.
* The array h[] is not accessed. There is no special coding
* for the case jthcol > 0.
*/

hx[0] = 2.0*x[0];
hx[1] = 2.0*x[1];
hx[2] = 2.0*(x[2] + x[3]);
hx[3] = hx[2];
hx[4] = 2.0*x[4];
hx[5] = -2.0*(x[5] + x[6]);
hx[6] = hx[5];

} /* qphess2 */

[NP3491/6] 3.e04nfc.31

nag opt qp NAG C Library Manual

static void qphess3(Integer n, Integer jthcol, double h[], Integer tdh,
double x[], double hx[], Nag_Comm *comm)

{
/* In this version of QPHESS, the matrix H is stored in h[]
* as a full two-dimensional array.
*/

#define H(I,J) h[(I)*tdh + (J)]

Integer i, j;

if (jthcol != 0)
{
/* Special case -- extract one column of H. */
j = jthcol - 1;
for (i = 0; i < n; ++i)
hx[i] = H(i,j);

}
else
{
/* Normal Case. */
for (i = 0; i < n; ++i) hx[i] = 0.0;

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)

hx[i] += H(i,j)*x[j];
}

} /* qphess3 */

13.2. Program Data

e04nfc Example Program Data

Linear term of f(x), c.
-0.02 -0.2 -0.2 -0.2 -0.2 0.04 0.04

Linear constraint matrix, A.
1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.0
0.02 0.04 0.01 0.02 0.02 0.0 0.0
0.02 0.03 0.0 0.0 0.01 0.0 0.0
0.70 0.75 0.80 0.75 0.80 0.97 0.0
0.02 0.06 0.08 0.12 0.02 0.01 0.97

Lower bounds
-0.01 -0.1 -0.01 -0.04 -0.1 -0.01 -0.01
-0.13 -1.0e21 -1.0e21 -1.0e21 -1.0e21 -0.0992 -0.003

Upper bounds
0.01 0.15 0.03 0.02 0.05 1.0e21 1.0e21
-0.13 -0.0049 -0.0064 -0.0037 -0.0012 1.0e21 0.002

Initial estimate of x
-0.01 -0.03 0.0 -0.01 -0.1 0.02 0.01

Following options for e04nfc are read by e04xyc in example 2.

begin e04nfc

fmax_iter = 30 /* Set maximum number of iterations in feasiblity phase */
max_iter = 50 /* Set maximum total number of iterations */

end

3.e04nfc.32 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04nfc

13.3. Program Results

Example 2: some optional parameters are set.

Optional parameter setting for e04nfc.

Option file: stdin

fmax_iter set to 30
max_iter set to 50

Parameters to e04nfc

Linear constraints............ 7 Number of variables........... 7

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 7
inf_bound............... 1.00e+21 inf_step................ 1.00e+21
fmax_iter............... 30 max_iter................ 50
hrows................... 7 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04nfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 3 1.0380e-01 3 4 0 0 0.00e+00
1 9 U 13 L 4.1e-02 1 3.0000e-02 3 4 0 0 0.00e+00
2 12 U 4 L 4.2e-02 0 0.0000e+00 4 3 0 0 0.00e+00

Itn 2 -- Feasible point found.
2 0 0 0.0e+00 0 4.5800e-02 4 3 0 0 0.00e+00
3 5 L 14 L 1.3e-01 0 4.1616e-02 3 4 0 0 0.00e+00
4 11 U 0 1.0e+00 0 3.9362e-02 3 3 0 1 4.16e-17
5 3 L 10 U 4.1e-01 0 3.7589e-02 2 4 0 1 1.19e-02
6 0 0 1.0e+00 0 3.7554e-02 2 4 0 1 1.04e-17
7 4 L 0 1.0e+00 0 3.7032e-02 1 4 0 2 3.80e-17

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e-02 -1.0000e-02 1.0000e-02 4.700e-01 0.000e+00
V 2 FR -6.98646e-02 -1.0000e-01 1.5000e-01 0.000e+00 3.014e-02
V 3 FR 1.82592e-02 -1.0000e-02 3.0000e-02 0.000e+00 1.174e-02
V 4 FR -2.42608e-02 -4.0000e-02 2.0000e-02 0.000e+00 1.574e-02
V 5 FR -6.20056e-02 -1.0000e-01 5.0000e-02 0.000e+00 3.799e-02
V 6 FR 1.38054e-02 -1.0000e-02 None 0.000e+00 2.381e-02
V 7 FR 4.06650e-03 -1.0000e-02 None 0.000e+00 1.407e-02

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -1.30000e-01 -1.3000e-01 -1.3000e-01 -1.908e+00 2.776e-17
L 2 FR -5.87990e-03 None -4.9000e-03 0.000e+00 9.799e-04
L 3 UL -6.40000e-03 None -6.4000e-03 -3.144e-01 0.000e+00
L 4 FR -4.53732e-03 None -3.7000e-03 0.000e+00 8.373e-04
L 5 FR -2.91600e-03 None -1.2000e-03 0.000e+00 1.716e-03
L 6 LL -9.92000e-02 -9.9200e-02 None 1.955e+00 1.388e-17
L 7 LL -3.00000e-03 -3.0000e-03 2.0000e-03 1.972e+00 -4.337e-19

[NP3491/6] 3.e04nfc.33

nag opt qp NAG C Library Manual

Exit after 7 iterations.

Optimal QP solution found.

Final QP objective value = 3.7031646e-02

A run of the same example with a warm start:

Parameters to e04nfc

Linear constraints............ 7 Number of variables........... 7

prob.................... Nag_QP2 start................... Nag_Warm
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 7
inf_bound............... 1.00e+21 inf_step................ 1.00e+21
fmax_iter............... 30 max_iter................ 50
hrows................... 7 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e-02 -1.0000e-02 1.0000e-02 4.700e-01 0.000e+00
V 2 FR -6.98646e-02 -1.0000e-01 1.5000e-01 0.000e+00 3.014e-02
V 3 FR 1.82592e-02 -1.0000e-02 3.0000e-02 0.000e+00 1.174e-02
V 4 FR -2.42608e-02 -4.0000e-02 2.0000e-02 0.000e+00 1.574e-02
V 5 FR -6.20056e-02 -1.0000e-01 5.0000e-02 0.000e+00 3.799e-02
V 6 FR 1.38054e-02 -1.0000e-02 None 0.000e+00 2.381e-02
V 7 FR 4.06650e-03 -1.0000e-02 None 0.000e+00 1.407e-02

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -1.30000e-01 -1.3000e-01 -1.3000e-01 -1.908e+00 0.000e+00
L 2 FR -5.87990e-03 None -4.9000e-03 0.000e+00 9.799e-04
L 3 UL -6.40000e-03 None -6.4000e-03 -3.144e-01 0.000e+00
L 4 FR -4.53732e-03 None -3.7000e-03 0.000e+00 8.373e-04
L 5 FR -2.91600e-03 None -1.2000e-03 0.000e+00 1.716e-03
L 6 LL -9.92000e-02 -9.9200e-02 None 1.955e+00 0.000e+00
L 7 LL -3.00000e-03 -3.0000e-03 2.0000e-03 1.972e+00 -1.735e-18

Exit after 0 iterations.

Optimal QP solution found.

Final QP objective value = 3.7031646e-02

3.e04nfc.34 [NP3491/6]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

